

Finding Plans for Rearranging Robots in θ -like Environments

Pavel Surynek

Charles University in Prague Faculty of Mathematics and Physics The Czech Republic

PATH PLANNING FOR MULTIPLE ROBOTS

- Input: Graph G=(V,E) and a set of robots $R=\{r_1,r_2,...,r_{\mu}\}$, where $\mu < |V|$
 - **each robot** is placed **in a vertex** (at most one robot in a vertex)
 - a **robot can move into an unoccupied** vertex through an edge (no other robot is allowed to enter the vertex)
 - initial positions of robots ... simple function $S_0: R \rightarrow V$
 - goal positions of robots ... simple function $S^+: R \rightarrow V$
- Task: Find a sequence of allowed moves for robots such that all the robots reach their goal positions starting from the given initial positions

MOTIVATION FOR THE PROBLEM

- Rearrangement of agents in tight space
- Automated control of heavy traffic

A Special case with θ -like Environment (θ -like Graph)

- $G_{\theta}(a,b,c) = (V,E)$ • $\mu = |V| - 1$
- Relation to general graphs
 - Decomposition to bi-connected components
 - Cycle decomposition of a bi-connected component
 - Last cycle with a handle represents a θ-like graph

Example: Exchanging robots r_1 and r_3 (transposition of robots)

PlanSIG 2008

THEORETICAL FOUNDATIONS FOR A SOLVING METHOD

Interpret arrangement of robots as a permutation
Proposition 1

• **Any permutation** over μ elements can be obtained as a composition of at most μ-1 **transpositions**.

• Proposition 2

Any even permutation over μ elements can be obtained as a composition of at most μ-1 rotations along a triple.

• Proposition 3

 Rotation along a triple is always solvable in a θ-like graph; transposition is solvable, if the θ-like graph contains an odd cycle.

PlanSIG 2008

A Solving Method – Theta-BOX

- **Pre-calculate** off-line optimal solutions for **transpositions** and rotations along **triples**
- **Compose a sub-optimal solution** of the optimal solutions of special cases
 - Use a fast alternative method if pre-calculated solutions are not available
 - Produces solutions of higher quality (shorter) than existing methods (Kornhauser et at., 1984 – MIT method)

CONCLUSIONS AND FUTURE WORK

- Special case of path planning for multiple robots in θ-like environments
- **Compose a sub-optimal solution** of the optimal solutions of sub-problems (Theta-BOX method)
- Produces **shorter solutions** than existing method
- Future: Improve a process of the search for optimal solutions of the special cases (transposition, triple rotation), currently a variant of **IDA*** is used

PlanSIG 2008