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Abstract. We are dealing with solving difficult SAT instances in this paper. We
propose a method for preprocessing SAT instances (CNF formulas) by using
consistency techniques known from constraint programming methodology and
by using our own consistency technique based on clique decomposition of a
graph representing conflicts in the input formula. If the clique decomposition is
of a good quality (cliques are appropriately large) it then allows us to make a
strong reasoning over the SAT instance, which can in some cases even decide
the satisfiability of the SAT instance without search. We implemented our pre-
processing method in C++ and compared it with several state-of-the-art SAT
solvers on selected difficult SAT instances. The result was a speedup in the or-
der of magnitude compared to the tested SAT solvers.
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1 Introduction

The source of inspiration for this paper was a recent work [28] on artificial intelli-
gence planning problems [3]. We exploit the newly developed techniques proposed in
[28] for solving Boolean satisfiability problems (SAT). In [28] the problem of finding
supporting actions for a goal in the Al planning context is studied. The problem is
called a supports problem in short. This is some kind of an important sub-problem
which must be solved many times when solving Al planning problems using the plan-
ning graphs [6]. It was shown that the supports problem is NP-complete. In doing so a
conversion of an instance of the SAT problem to the instance of the supports problem
was used [28]. This proof uncovered some interesting similarities between the SAT
problem and the supports problem. Strictly speaking the similarities itself are neither
interesting nor useful. They become more interesting after connecting them with the
new method for solving supports problems based on a greedy clique decomposition
which was also proposed in the mentioned work. The positive experience made with
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the method on planning problems and the observed similarity lead us to the idea of
adapting the technique of the greedy clique decomposition to solve SAT problems.

Boolean formula satisfaction problems and SAT solving techniques play an ex-
tremely important role in theoretical computer science as well as in practice. The
question of whether there exist a complete polynomial time SAT solver is a key ques-
tion for theoretical computer science and is open for many years (the P vs. NP prob-
lem) [7]. On the other hand the practical use of SAT problems and SAT solvers in real
life applications is also very intensive. Applications of SAT solving techniques range
from microprocessor verification [30] and field-programmable gate array design [23]
to solving Al planning problems by translating them into Boolean formulas [17].

An excellent performance breakthrough was done in solving SAT problems over
the past years. Thanks to new algorithms and implementation techniques focused on
real life SAT problems many of the today’s benchmark problems [18, 25] are solved
by state-of-the-art solvers [11, 12, 14, 15, 21, 27] in time proportional to the size of
the input. It seems that the difficulty of many SAT benchmark problems consists in
their size only. A lot of smaller benchmark problems are solved in real-time by to-
day’s state-of-the-art SAT solvers. The observation that can be deduced upon these
facts is that there is almost no chance to compete with the best SAT solvers by a
newly written SAT solver on these problems. That is why we are concentrating on
difficult instances of SAT problems only, where the word difficult means difficult for
today’s state-of-the-art SAT solvers.

A very valuable set of difficult (in the mentioned sense) problems was collected by
Aloul [1]. Although these problems are small in the length of the input formula they
are difficult to be answered. The detailed discussion about hardness of these problems
is given in [2]. One of the aspects of problem difficulty is that these problems are
mostly unsatisfiable (and this fact is well hidden in the problem). The solver cannot
guess a solution using its advanced techniques and heuristics in such a case and it
must really perform some search in order to prove that there is no solution. In the case
of a positive answer the satisfying valuation of variables serves a witness (of small
size) certifying existence of at least one solution. If the solver obtains (possibly by
guessing) a witness its task is finished. In contrast to this, there is no such small wit-
ness in the case of a negative answer so the search must be performed.

Our contribution to solving SAT problems consists of preprocessing and reformu-
lating of the input Boolean formula in the CNF (conjunctive normal form - conjunc-
tion of disjunctions). The result of this processing is the answer whether the input
formula is unsatisfiable or a new formula (hopefully simpler) with the same set of
satisfying valuations as that of the input one. If the input formula is not decided by the
preprocessing phase then the preprocessed formula is sent to the SAT solver of the
user’s choice. The idea behind this process is to make the task for the SAT solver
easier by deciding the input formula within the fast preprocessing phase or by provid-
ing an equivalent but simpler formula to the SAT solver. Experiments showed that the
solving process over the above mentioned difficult SAT benchmarks speeds up by the
order of magnitude after using our approach.

The reformulation within the preprocessing phase itself is simple. We are viewing
the input Boolean formula in CNF as a graph (with vertices and edges). For each
literal (variable or its negation) of the input formula we consider a vertex and for each
conflict between literals we consider an edge. Conflicting literals are those that cannot
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be both satisfied in a single valuation of variables, for example positive and negative
literals of the same variable are conflicting. Generally, a set of literals of a formula is
conflicting if the formula entails that at most one of the literals can be #rue . To be
able to use our reasoning based on the clique decomposition we need a graph with
appropriately large complete sub-graphs (cliques). That is, we need some kind of a
good approximation of the sets of conflicting literals. Unfortunately the graph arising
from the above interpretation of the Boolean formula in CNF is rather sparse (the
largest clique is of size 2). That is why we apply further inference by which we de-
duce more conflicts between the literals and which allow us to introduce more edges
into the graph. We are using singleton arc-consistency [5] as the inference technique
for deducing new edges.

Having the graph constructed from the input CNF formula, a clique decomposition
of this graph is found by a greedy algorithm (we do not need an optimal clique de-
composition; we need just some of the reasonable quality). The important property of
the constructed clique decomposition is that at most one literal from each clique can
be assigned the value true . In this situation we perform some kind of literal contribu-
tion counting to rule out the literals that can never be #rue . To do this, the maximum
number of satisfied clauses by literals of each clique is calculated. Then a literal of a
certain clique can be ruled out if the literals from the other cliques together with the
selected literal do not satisfy enough clauses to satisfy the input formula.

Although this problem reformulation seems weak it provides a strong reasoning
about the dependencies among clauses of the CNF Boolean formula and about the
effect of the selection of a value for a variable on the overall satisfiability of the for-
mula. Moreover if all the literals are ruled out during the preprocessing phase the
input formula is obviously unsatisfiable. Experimental evaluation showed that this
happen frequently on difficult SAT problems. For other cases a new formula in the
CNF equivalent to the input formula is produced. The new formula is constructed
from the original one by adding clauses that capture all the dependencies inferred by
the initial singleton arc-consistency stage and by the literal contribution counting
based on the clique decomposition.

The paper is organized as follows. A detailed formal description of the reformula-
tion of a SAT instance using the greedy clique decomposition is given in section 2.
The subsequent section 3 is devoted to some experimental comparison of our ap-
proach with the existing state-of-the-art SAT solvers. We are discussing the contribu-
tion of our method within this section too. Finally we put our work in relation to simi-
lar works in the field of Boolean satisfiability and we propose some future research
directions of the studied topic.

2 SAT Reformulation Using Greedy Clique Decomposition

We will formally describe the details of the process of SAT problem reformulation in
this section. Let B=A[, V', xj. be the input Boolean formula in CNF where xj. isa
literal (variable or its negation) for all possible i and j. A sub-formula V" x| of
the input formula B for every possible i is called a clause. The ith clause of the

formula B will be denoted as C; in the following paragraphs. As it was mentioned in
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the introduction, the basic idea of the SAT problem reformulation consists in viewing
the input formula as an undirected graph in which the internal structure of the formula
is captured in some way. To be more particular the graph will capture the pairs of
conflicting literals and it will be constructed in several stages.

2.1 Inference of Conflicting Literals

We start by the construction of an undirected graph G, =(V,,E,) which will repre-
sent trivially conflicting literals. The graph will be called a graph of trivial conflicts.
The graph G, will then undergo some further inference process by which the addi-
tional conflicts will be inferred. We will denote the resulting undirected graph as
G, =(V;,E;) and call it an intermediate graph of conflicts.

The construction of the undirected graph G, is simple. A vertex is introduced into
the graph G, for each literal occurring in the formula B, that is ¥, =, U7,
(notice that |V;| is typically smaller than the length of the formula, since literals may
occur many times in the formula while only once in the graph). The construction of
the set of edges E, is also straightforward. An edge {xi.,xlk} is introduced into the
graph G, if the literals xi. are x/ are trivially conflicting, that is if one is a variable
v and the other is —v for some Boolean variable v. The graph G, is finished by
performing the above step for all possible pairs of conflicting literals. The interpreta-
tion of the graph of conflicts is that if a literal corresponding to a vertex is selected to
be assigned the value #rue all literals corresponding to the neighboring vertices must
be assigned the value false.

An example graph resulting from the described process over a selected benchmark
problem is shown in the left part of figure 1. The resulting graph is visibly sparse,
since there are edges only between the literals of the same variable. Hence it is not a
good starting point for our method and a further inference mechanism for discovering
more conflicting pairs of literals (more edges for the graph) must be applied. This
further inference mechanism takes the already constructed graph G, and augments it
by adding new edges. The result of this stage is an intermediate graph of con-
flicts G; .

The process of construction of graph G; exploits techniques known from standard
SAT resolution approaches and from constraint programming [9] - unit propagation
[10, 31], arc-consistency (AC) [20] and singleton arc-consistency (SAC) [5]. Before
describing the construction of the graph G, let us recall a modification of notions.
We modify the above concepts slightly for the SAT domain to prepare them for our
purposes. The following definitions assume the input formula B in CNF and a corre-
sponding graph of conflicts G, (for example the graph G, expressing the trivial
conflicts).

Definition 1 (Arc-consistency in SAT instance w.r.t. the graph of conflicts). Con-
sider two clauses C, and C, for i,k e{l,2,...,n}, i #k of the formula B. A literal
x’] (je{l,2,...,m}) from the clause C, is supported by the clause C, with respect
to the given graph of conflicts G, if there exists a literal x; (/€ {1,2,...,m,} ) from
the clause C, , such that the literals x‘/ and x,k are not in a conflict with respect to the
graph G, (not connected by an edge). An ordered pair of clauses (C,,C,) of the
formula B is called an arc in this context. An arc (C,,C,) for some i,k €{l,2,...,n}
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is consistent (or arc-consistent) with respect to the graph of conflicts G, if all the
literals of the clause C; are supported by the clause C, with respect to the graph of
conflicts G,. The formula B is called arc-consistent with respect to the graph of
conflicts G, if all the arcs (C,,C,) for all i,k=1,2,...,n are arc-consistent with
respect to the graph of conflicts G, . OO

Let us note that our definition is based on a dual view of the satisfaction problem.
That is, we use the clauses of the formula as the CSP variables [9] instead of the origi-
nal Boolean variables. Having these CSP variables, (CSP) constraints necessary for
the definition of arc-consistency arise naturally.

The reason for the definition of arc-consistency is that the literals which are not
supported according to the definition cannot be assigned the value frue (this means
that the corresponding variable cannot be assigned the value false in the case of a
negative literal). So the solver can rule out such literals from further attempts to as-
sign them the value #rue, which may reduce the size of the search space. Notice that
the definition has the graph of conflicts G, as a parameter. It is possible to put any
correct graph of conflicts as a parameter of this definition, whereas correct means,
that if {y,z} is the edge of the graph then B = y # z must be a tautology. This is
obviously true for the graph of trivial conflicts G} . Notice also that if we use the
graph of trivial conflicts G, the definition becomes identical to unit propagation
[10, 31].

Having the Boolean formula B the question is how to make it arc-consistent with
respect to the given graph of conflicts. For this purpose we adopt techniques devel-
oped in constraint programming and by SAT community, namely the arc-consistency
enforcing algorithms [9, 20] and unit propagation [10, 31]. There is a great variety of
such algorithms, however their common feature is the search for supports for every
value (literal) which is suspected of not being supported. The main difference among
these algorithms is the efficiency of the search for supports. If an unsupported literal
is detected it is ruled out. Ruling out an unsupported literal may cause that some other
literal loses its only support. This chain-like propagation of changes continues until a
stable state is reached. For purposes of the SAT domain this propagation process is
usually augmented by an additional simplification rule. If the consistency enforcing
algorithm detects that within some clause there is only one literal that can be selected
to be true, it is fixed to value true and the corresponding clause is cut out from fur-
ther reasoning (this is exactly the simplification rule from unit propagation).

Unfortunately the defined arc-consistency over Boolean formulas in the CNF form
is too weak to infer significantly more conflicts than that are already present in the
graph of trivial conflicts. Therefore we need to make the consistency stronger. Per-
haps the simplest way to do this is to make the selected consistency technique single-
ton [5]. The following definition again assumes the Boolean formula B and the cor-
responding graph of conflicts G, (again the graph of trivial conflicts G, can be
used).

Definition 2 (Singleton arc-consistency in a SAT instance w.r.t. the graph of con-
flicts). A literal xlk (le{l,2,...,m}) from a clause C, for ke{l,2,...,n} of the
formula B is singleton arc-consistent with respect to the given graph of conflicts G,
if the formula obtained from B by replacing the clause C, by the literal x/ (the
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resulting formula is (A V%, X)) AxS A(AL,, V7 X)) is arc-consistent with
respect to the graph of conflicts G, . O

Unsupported literals in the formula modified by replacing the clause C, by the lit-
eral x are in conflict with the literal x/ . This is quite intuitive, the selection of the
literal x; to be assigned the value frue rules out some other literals. Hence these
literals are in conflict with the selected literal x; . Having singleton arc-consistency
we are ready to infer new edges for the graph of conflicts.

The intermediate graph of conflicts G, is constructed from the graph of trivial
conflicts G, in the following way. Initially the graph G, is identical to the graph
G, , that is we start with the initialization V,; <~ ¥, and E; < E, . Then for every
literal y eV, singleton arc-consistency with respect to the graph of conflicts G} is
enforced. If the consistency discovers some unsupported literals, say literals
Z,,2y,...,2, , edges {y,z,} forall i=1,2,...,m are added into the set of edges E; .

An example of the resulting graph of conflicts is shown in the right part of the fig-
ure 1. It is constructed from the original graph of trivial conflicts from the left part of
the figure 1. The required complete sub-graphs of the graph are clearly visible.
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Fig. 1. The left part of the figure shows a graph of trivial conflicts for the SAT benchmark
problem pigeon-hole principle number 6 (hole06.cnf). Vertices represents literals, edges are
between pairs of positive and negative literals of the same variable. The right part of the figure
shows an intermediate graph of conflicts inferred from the original graph of the left by single-
ton arc-consistency. The graph contains edges from the original graph plus the inferred edges.
Six complete sub-graphs each containing seven vertices are clearly visible and can be found by
a simple greedy algorithm.

The described process of inference of conflicting literals is relatively generic. Both
different initial graphs of trivial conflicts as well as different consistency techniques
than arc-consistency and singleton arc-consistency for inference of new edges can be
used. Both entities, graphs and consistency techniques, may be considered as parame-
ters of the method.

2.2 Greedy Clique Decomposition and Literal Contribution Counting

To deduce yet more information from the graph of conflicts G, =(V;,E;) a clique
decomposition of the graph is constructed. Formally, a partition of vertices
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V: =K, UK, U...UK, such that each set of vertices K, for i=1,2,...,s induces a
cllque over the set of edges E; and K, NK, =2 for all i,j=12,. s&i;&j . Let
E, denotes the set of edges 1nduced by the clique K,, let E, denotes the set of
edges outside the clique decomposition, that is E, E2 -U. ]E . Our inference
method based on literal contribution counting performs best if chques of the decom-
position are as large as possible (that is s must be as small as possible) and the size of
E, is as small as possible. The better the quality of the decomposition is the stronger
results are produced by our inference method. Since the problem of finding the opti-
mal clique decomposition with respect to the above criterion is obviously NP-
complete on a general graph [16], we cannot afford to construct the optimal decompo-
sition and we must abandon this requirement. Nevertheless experiments showed that
the simple greedy algorithm can find a clique decomposition of acceptable quality
(with respect to clique sizes and the number of edges outside the decomposition).

Our greedy algorithm for finding a clique decomposition is based on the standard
greedy algorithm for finding the largest clique. The main loop of the greedy algorithm
repeatedly finds a largest clique. The largest clique is found in the following way. A
vertex of the highest degree is found in the graph and it is added to the constructed
clique which is empty at the beginning. Then the graph is restricted on the neighbor-
hood of the selected vertex and a vertex of the highest degree in this neighborhood is
selected as second. Then the graph is again restricted on the neighborhood of these
two vertices (that is the considered vertices are neighbors of both the first and the
second selected vertex) and the algorithm continues until the neighborhood of se-
lected vertices is empty. The constructed clique and its neighborhood are removed
from the graph and the next clique is constructed. This main loop continues until the
graph is empty.

The above described greedy algorithm performed over the graph from the right part
of the figure 1 finds the clique decomposition consisting of six cliques of size seven.
The fact that at most one literal from a clique can be selected to be assigned the value
true is used in our inference method.

For the following definitions we assume a Boolean formula B=A[, V', x and
the corresponding clique decomposition V,; =K, UK, U...UK, of the 1ntermed1ate
graph of conflicts G; =(V;,E;). Next let I c {1 2,...,n} be a set of indexes of some
clauses of the formula B . The set I defines a sub-formula B, of the formula B,
where B, =A,_,C..

iel

Definition 3 (Literal contribution). A contribution of a literal y to the sub-formula
B, is defined as the number of clauses of B, in which the literal y occurs and it is
denoted as c(y,7). O

Definition 4 (Clique contribution). A contribution of a clique K €{K,,K,,...,K}
to the sub-formula B, is defined as max _,(c(y,/)) and itis denoted as ¢(K,/). O

The concept of clique contribution is helpful when we are trying to decide whether
it is possible to satisfy the sub-formula B, using the literals from the clique decompo-
sition. If for instance ), ,c(K,,1)< |1 | holds then the sub-formula B, cannot be
satisfied and hence also B cannot be satisfied. Moreover we can handle a more gen-
eral case as it is described in the following definitions.
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Definition 5 (Clique-consistent literal). A literal y € K, for i €{1,2,...,a} is said to
be clique-consistent with respect to the sub-formula B, if % . . ..c(K,I)
2|1|—c(y,1) .4

Definition 6 (Clique-consistent formula). A formula B is clique-consistent with
respect to the sub-formula B, if all the literals of the formula B are clique-consistent
with respect to B,. O

It is easy to see that a clique-inconsistent literal with respect to some sub-formula
of B cannot be selected to be assigned the value true . Thus such literals can be ruled
out from further reasoning. The proof of this claim is provided in the technical report
[28]. In addition, this type of consistency is strictly stronger than the discussed unit
propagation, arc-consistency and singleton arc-consistency. The proof of this claim is
again given in [28].

The remaining question is how to select the described sub-formulas B, of B
which are used for computation of the clique-inconsistent literals. This selection is
crucial for the strength of the proposed clique-consistency. It is clear that we need to
rule out as many as possible inconsistent literals. As it is impossible to compute the
defined consistency with respect to all such sub-formulas of B, because there are too
many sub-formulas, we need to select a subset of them carefully. The experiments
carried out in [28] showed that a good strength of the clique-consistency can be ob-
tained by selecting clauses into the sub-formula B, which have the same number of
literals. More precisely, we use sub-formulas B, =A,_, C, of B, where
I ={ie{l,2,...,n}|m, =r} for all possible reN for which B,_ is not empty (we
suppose that a clause of B does not contain an individual literal more than once). Let
us note that we do not know whether this selection is the best possible.

Theorem 1 (Complexity of clique-consistency enforcing algorithm). There exists a
polynomial time algorithm for enforcing clique-consistency with respect to a
sub-formula of a given input formula. R

The proof of this theorem can be found in [28]. Having such an algorithm it is pos-
sible to extend it for multiple sub-formulas B, simply by running the algorithm for
each »eN for which B, is non-empty. Since r is proportional to the size of the
input the, resulting algoritﬁm is also polynomial.

2.3 Output of the Reformulation Process

At this point everything is ready to introduce the final step of our reformulation
method. We will be constructing a modified formula £ which is initially set to be
identical to B . We will further preprocess B by the singleton version of the defined
clique-consistency. Conflicts inferred by this further preprocessing will be stored in a
new graph of conflicts G, =(V,,E;) which is initially set to be the same as the graph
G, . The graph G, will be called a final graph of conflicts in this context.

Singleton clique-consistency is computed in the following way. For each literal y
of the input formula B we enforce clique-consistency for the formula obtained from
B by selecting a literal y to be assigned the value #rue . More precisely, clauses
containing y are removed and the negation of the literal y is removed from remain-

ing clauses of B (removal of a literal x; from the clause C, = 2 xi. of the formula
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B is defined as replacement of the clause C, by the clause (V'Zx))v (V" x))).
The clique-consistency is then enforced for the resulting formula. Some literals may
be found inconsistent during consistency enforcing. These literals are in conflict with
the literal y . If for some clause all its literals are found inconsistent with y then the
literal y cannot be selected to be frue and a new clause —y is added to S
(fB < f A—y). Otherwise the conflicting literals are stored in the graph of conflicts
G, as new edges (that is, if the literal y is in conflict with the literal z, the edge
{y,z} is added to G, ).

If for some clause it is discovered by the clique-consistency that none of its literals
can be assigned the value frue the process terminates with the answer that the for-
mula B cannot be satisfied. This outcome is ensured by the correctness of the
method. Our experiments showed that this situation is the most successful case, be-
cause an answer to the satisfiability is obtained in polynomial time without further
expensive search for a solution.

If the process does not terminate with the negative answer then all the edges of the
graph of conflicts G, are translated into new clauses of the formula /. That is, for
every edge {y,z}eE, we add a clause yv—z into the formula S
(B« fA(yv—z)). The resulting formula £ is equivalent with the original input
formula B . Notice that the conflicts inferred by the preceding reformulation stages
are also reflected in the formula £, since the graph G, subsumes the preceding
graphs of conflicts G, and G, . The formula S is finally sent to the SAT solver of
the user’s choice. Justification of this step is provided by the following corollary of
the correctness of the clique-consistency.

Fig. 2. A final graph of conflicts for the SAT benchmark problem pigeon-hole principle num-
ber 6 (hole06.cnf). The graph contains edges from the intermediate graph of conflicts from
figure 1 plus the edges inferred by singleton clique-consistency.

Corollary 1 (Correctness of reformulation). The formula f resulting from the
described preprocessing has the same set of satisfying valuations as the original for-
mula B. 1

The graph of conflicts G, resulting from processing the intermediate graph of con-
flicts G, for the SAT benchmark problem from figure 1 is shown in figure 2.
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3 Experimental Results

We chose three state-of-the-art SAT solvers for comparison with our reformulation
method. The SAT solvers of our choice were zChaff [14, 21], HaifaSAT [15, 27] and
MiniSAT (a version with SATElite preprocessing integrated) [11, 12] (we used the
latest available versions to the time of writing this paper). Our choice was guided by
the results of several last SAT competitions [18, 25] in which these solvers belonged
to the winners. The secondary guidance was that complete source code (in C/C++) for
all these solvers is available on web pages of their authors. As we implemented our
method in C++ too, this fact allowed us to compile all source codes by the same com-
piler with the same optimization options which guarantees more equitable conditions
for the comparison (a complete source code implementing our method in C++ avail-
able at the web page: http://ktiml.mff.cuni.cz/~surynek/software/ssat/ssat.html). All
the tests were run on the machine with two AMD Opteron 242 processors (1600
MHz) with 1GB of memory under Mandriva Linux 10.2. Our method as well as the
listed SAT solvers were compiled by the gcc compiler version 3.4.3 with options
provided maximum optimization for the target testing machine (-O3 -mtune=opteron).
Although the testing machine has two processors no parallel processing was used.

3.1 Difficult SAT Instances Selected for Experiments

The testing set consisted of several difficult unsatisfiable SAT instances. This set of
benchmark problems was collected by Aloul [1] and it is provided at his research web
page. The details about hardness and construction of these instances are discussed in
[2], but let us briefly introduce the problems.

Pigeon Hole Instances. [hole] This is a standard SAT benchmark encoding the
pigeon hole principle problem. The problem asks whether it is possible to place n +1
pigeons in n holes without two pigeons being in the same hole. The problem is
obviously unsatisfiable. We used six instances of this problem ranging from 6 to 12
holes.

Randomized Urquhart Instances. [urg] This set of benchmark problems contains
several artificially constructed hard unsatisfiable instances. More details about these
problems are provided in [29]. In addition, the problems were randomized for our
testing purposes. We used four instances of the problems of this type.

Field Programmable Gate Array Routing Instances. [fpga, chnl] This benchmark
problem resembles the pigeon hole problem. The question is whether it is possible to
route n connections through m tracks provided by the field programmable gate array
component. If n>m the problem cannot be satisfied. We used sixteen unsatisfiable
instances of this problem for various number of required routes and connections. Two
different encodings of the problem are used - denoted fpga and chnl. More details
about the encoding of this problem are provided in [23].

For each benchmark SAT instance we measured the overall time necessary to de-
cide its satisfiability. The results are shown in table 1 and table 2. The speedup ob-
tained by using our method compared to a selected SAT solver is also shown.
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Table 1. Experimental comparison of three SAT solvers over the selected difficult benchmark
SAT instances. We used the timeout of 10.0 minutes (600.00 seconds) for all the tests.

Number of vari- L .
Instance Satisfiable ables / number of (2':2:)5“‘(\’:) ( szggﬁ:lfs) l('l: ;:;Snz-;-
clauses

chnl10_11 unsat 220/1122 34.30 7.54 > 600.00
chnl10_12 unsat 240/1344 101.81 9.11 > 600.00
chnl10_13 unsat 260/1586 200.30 11.47 > 600.00
chnl11_12 unsat 264/1476 > 600.00 33.49 > 600.00
chnl11_13 unsat 286/1472 > 600.00 187.08 > 600.00
chnl11_20 unsat 440/4220 > 600.00 329.57 > 600.00
urg3_5 unsat 46/470 95.04 > 600.00 > 600.00
urg4_5 unsat 74/694 > 600.00 > 600.00 > 600.00
urg5_5 unsat 121/1210 > 600.00 > 600.00 > 600.00
urg6_5 unsat 180/1756 > 600.00 > 600.00 > 600.00
hole6 unsat 42/133 0.01 0.01 0.01
hole7 unsat 56/204 0.09 0.04 0.02
hole8 unsat 72/297 0.49 0.23 0.94
hole9 unsat 90/415 3.64 1.46 478.16
hole10 unsat 110/561 39.24 7.53 > 600.00
hole11 unsat 132/738 > 600.00 32.36 > 600.00
hole12 unsat 156/949 > 600.00 372.18 > 600.00
fpga10_11 unsat 220/1122 44.77 12.58 > 600.00
fpga10_12 unsat 240/1344 119.26 33.82 > 600.00
fpga10_13 unsat 260/1586 362.24 76.15 > 600.00
fpga10_15 unsat 300/2130 > 600.00 274.84 > 600.00
fpga10_20 unsat 400/3840 > 600.00 546.00 > 600.00
fpga11_12 unsat 264/1476 > 600.00 55.70 > 600.00
fpga11_13 unsat 286/1742 > 600.00 237.54 > 600.00
fpga11_14 unsat 308/2030 > 600.00 > 600.00 > 600.00
fpga11_15 unsat 330/2340 > 600.00 > 600.00 > 600.00
fpga11_20 unsat 440/4220 > 600.00 > 600.00 > 600.00

Table 2. Experimental comparison of three SAT solvers with the method using
clique-consistency over the selected difficult benchmark SAT instances. Again timeout of 10.0
minutes (600.00 seconds) for all the tests was used.

. Cliques L Speedu Speedu Speedu
Instance Decided b_y (coﬂnt X Decision rario w.rg. raFt,io w.r'.)t ralt)io w.r'.)t
preprocessing size) (seconds) MiniSAT 2Chaff HaifaSAT
chnl10_11 yes 20 x 11 0.43 79.76 17.53 > 1395.34
chnl10_12 yes 20x12 0.60 169.68 8.51 > 1000.00
chnl10_13 yes 20x 13 0.78 256.79 14.70 > 769.23
chnl11_12 yes 22x12 0.70 > 857.14 47.84 > 857.14
chnl11_13 yes 22x13 0.92 > 652.17 203.34 > 652.17
chnl11_20 yes 22x20 5.74 > 104.42 57.41 > 104.42
urg3_5 no 47x2 130.15 0.73 N/A N/A
urg4_5 no 73x2 > 600.00 N/A N/A NA
urg5_5 no 120x 2 > 600.00 N/A N/A N/A
urq6_5 no 179x2 > 600.00 N/A N/A N/A
hole6 yes 6x7 0.01 1.0 1.0 1.0
hole7 yes 7x8 0.02 4.5 2.0 1.0
hole8 yes 8x9 0.04 12.25 5.75 23.5
hole9 yes 9x10 0.08 45.5 18.25 5977.00
hole10 yes 10 x 11 0.13 301.84 57.92 > 4615.38
hole11 yes 11x12 0.20 > 3000.00 161.8 > 3000.00
hole12 yes 12x13 0.30 > 2000.00 1240.6 > 2000.00
fpga10_11 yes 20 x 11 0.46 97.32 27.34 > 1304.34
fpga10_12 yes 20x12 0.64 186.34 52.84 > 937.50
fpga10_13 yes 20x 13 0.84 431.23 90.65 >714.28
fpga10_15 yes 20x 15 1.39 > 431.65 197.72 > 431.65
fpga10_20 yes 20 x 20 4.72 > 127.11 115.67 > 127.11
fpgat1_12 yes 22x12 0.76 >789.47 73.28 >789.47
fpga11_13 yes 22x13 1.01 >594.05 235.18 >594.05
fpgal1_14 yes 22x14 1.30 >461.53 > 461.53 > 461.53
fpga11_15 yes 22x15 1.67 > 359.28 > 359.28 > 359.28
fpga11_20 yes 22 x 20 5.96 > 100.67 > 100.67 > 100.67
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3.2 Effect of Problem Reformulation

As it is evident from our experiments the proposed method brings significant im-
provement in terms of time necessary for the decision of the selected difficult bench-
mark problems (Pigeon hole, FPGA routing instances). The improvements are in the
order of magnitude in comparison to all tested state-of-the-art SAT solvers. It seems
that the improvement on selected benchmarks is exponential with respect to the best
tested SAT solver. The conclusion is that there is still a space to improve SAT
solvers. However, the domain of the improvement is more likely in the difficult in-
stances of SAT problems which are typically unsatisfiable. It is also evident that the
clique-consistency is not an universal method for difficult SAT instances. There is no
improvement on instances where no cliques of reasonable size are found (randomized
Urquhart instances). The interesting feature of the tested SAT instances is that they
contain cliques of the same size. This may be accounted to the symmetrical formula-
tion of the problems.

In our further experiments we also performed the comparison with the RSAT
solver [24]. The results were very similar in the sense that the solver does not cope
well with these problems. Unfortunately the solver is provided without the source
code so we do not consider this test as a relevant one. Another SAT solver which
worth consideration for our tests (achieved good results in the SAT Race competition
[25]) - Eureka [22] - is not provided at all (no source code nor executables are pro-
vided).

We also tested our approach on SAT instances where the preprocessing stage does
not terminate by the answer that the given SAT instance cannot be satisfied. This is
the situation when the problem is not decided by the preprocessing stage and a new
equivalent SAT instance is produced and sent to the solver. In such situations our
method does not provide competitive results. The resulting formula is typically solved
faster by the SAT solver but the preprocessing stage takes too much time. The unaf-
fordable time consumption in the preprocessing stage is caused by extensive propaga-
tion performed by the method by which huge numbers of conflicts are inferred. It
seems that on these problems the proposed approach is too strong and represents an
overhead only. The numbers of inferred conflicts is not proportional to the time saved
in the search for the solution stage. Moreover, as it was mentioned in the introduction,
there is almost no room for improving the SAT solvers on such easy (satisfiable) SAT
instances. However, this disadvantage may be overcome firstly by a better implemen-
tation of our technique (our current implementation is an experimental prototype and
the quality of our code is uncompetitive with the quality of code of the tested SAT
solvers) and secondly by making the propagation less extensive on problems with
many conflicts (that is, not to infer all the conflicts).

The question may now be what to do with the method at current stage of imple-
mentation when we have a new problem of unknown difficulty. That is shall we use
the method or the SAT solver of our choice directly? Technically we can answer this
question as follows. We can run both the preprocessing method and the SAT solver in
parallel. On a machine with more than one processor we obtain an exponential
speedup (the method succeeds) or no improvement. On a machine with only one
processor we may obtain an exponential speedup at the expense of constant slow-
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down. However, the ultimate goal of our implementing efforts is to answer this ques-
tion automatically within the preprocessing phase.

4 Related Works

Our method for SAT problem reformulation was originally proposed for solving
planning problems using planning graphs. It was named projection consistency and it
was described in the technical report [28] by Surynek. Clique-consistency proposed in
this paper is an adaptation of projection consistency for the SAT domain. In addition
to the description of projection consistency, the technical report contains theoretical
comparison of the proposed consistency with arc-consistency and singleton arc-
consistency (briefly said AC and SAC can be simulated by projection consistency;
moreover there are cases on which projection consistency propagates while AC and
SAC do not; the similar results hold for clique-consistency too).

The idea of exploiting structural information for solving problems is not new.
There is a lot of works concerning this topic. Many of these works are dealing with
methods for breaking symmetries [2, 4, 8]. We share the goal with these methods,
which is to reduce the search space. However, we differ in the way how we are doing
this. We are rather trying to infer what would happen if the search over the problem
proceeds in some way. And if that direction seems to be unpromising the correspond-
ing part of the search space is skipped. Symmetry breaking methods are rather trying
not to do the same work twice (or more times) by a clever transformation of the origi-
nal problem.

Our work was much influenced by the paper of Aloul, Markov and Sakallah [2].
We are studying the same set of difficult SAT problems. Nevertheless, it seems that
our method is simpler to implement and more effective on the set of selected testing
problems.

Another original approach to solving SAT problems is to exploit integer program-
ming (IP) techniques. An interesting combination of IP and SAT techniques is given
in [19]. The proposed IP approach is especially successful on difficult SAT problems.

Finally let us note that the detection of cliques in the structure of the problem is not
new. A work dealing with a consistency based on cliques of inequalities was pub-
lished by Sqalli and Freuder [26]. They use information about cliques to reach more
global reasoning about the problem. Another work dealing with the similar ideas is
[13] in which the authors use a graph structure of the problem to transform it into
another formulation based on global constraints, which provide stronger propagation
than the original formulation.

5 Conclusions and Future Work

We proposed a method for preprocessing difficult (unsatisfiable) SAT instances based
on the greedy clique decomposition of the transformed input CNF formula. Although
the method is not universal it provides improvements in the order of magnitude com-
pared to the state-of-the-art SAT solvers on tested SAT instances. Moreover, our
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method can be easily integrated into a SAT solver (new or existing) which may sig-
nificantly improve its performance on difficult SAT instances.

For future we plan to further tune the method to be able to cope better with the
problems having few edges in the graphs of conflicts (for example Urquhart in-
stances). This may be done by some alternative consistency technique instead of sin-
gleton arc-consistency. We also plan to investigate the possibility to make the pre-
processing iterative. That is to further preprocess the formula resulting from the pre-
vious preprocessing.

Another issue worth a deeper study is how the cliques of the clique decomposition
should look like in order to our method can succeed. Our further experiments showed
that better results can be obtained by using a clique decomposition where sizes of the
individual cliques differ little (having several cliques of the similar size is better than
having one large clique and several much smaller cliques).

We also plan to write an experimental SAT solver which would utilize the
clique-consistency during search. This may be useful for early determining that a
certain part of the search space does not contain a solution.

Finally an interesting research direction is some kind of a combination of existing
symmetry breaking methods and the proposed clique-consistency.
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