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Abstract. We formulate a problem of goal satisfaction in mutex networks in
this paper. The proposed problem is motivated by problems that arise in concur-
rent planning. For more efficient solving of goal satisfaction problem we design
a novel global filtration technique. The filtration technique is based on exploit-
ing graphical structures of the problem - clique decomposition of the problem is
used. We evaluated the proposed filtration technique on a set of random goal
satisfaction problems as well as a part of GraphPlan based planning algorithm.
In both cases we obtained significant improvements in comparison with exist-
ing techniques.
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1 Introduction

We propose a new global filtration method for satisfying goals in mutual exclusion
networks in this paper. The mutual exclusion network is an undirected graph where a
finite set of symbols is assigned to each vertex. The interpretation of edges is that a
pair of vertices connected by an edge cannot be selected together. In other words,
edges in the graph represent mutual exclusions of vertices (or conflicts between verti-
ces). Having a goal, which is a finite set of symbols, the task is to select a stable set of
vertices in this graph such that the union of their symbols covers the given goal.

This problem may seem artificial at first sight but in fact it is a slight reformulation
of problems that appear in concurrent planning for artificial intelligence [1] with
planning graphs [2] and in Boolean formula satisfaction [3]. In addition to these ap-
plications the defined problem may be generic enough to worth studying for itself (the
more detailed motivation is given in section 2).

Existing techniques that can be used to solve the problem include variety of back-
tracking based search methods enhanced with consistency techniques which is a typi-
cal approach used in constraint programming practice [4] and which we are following
too. Our experiments expectably showed that local consistency techniques (namely
arc-consistency) can bring significant improvements in terms of overall solving time
compared to plain backtracking. Nevertheless, this result invoked a question what an
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improvement can be obtained by using a certain type of global consistency? We are
trying to answer this question in this paper.

As a first step we investigated the possible usage of existing global constraints [4,
12] for modeling the problem. We considered several existing global constraints
based on network flows (such as allDifferent and similar constraints; our idea was to
simulate the problem as a network flow and then model it using these constraints).
But it turned out that existing global constraints are not suitable for modeling the
problem (the reason we identified as a main obstacle is the quite complicated relation
between the impact of selection of a vertex on the rest of the mutual exclusion net-
work and the goal we are trying to satisfy). The option was to develop our own spe-
cialized global filtering method for the problem which we eventually did.

Our filtering method exploits the structural information encoded in the problem.
Valuable structural information in the mutual exclusion network is a complete sub-
graph (clique). More precisely we can extract this structural information if we have a
clique decomposition of the network.

If we know that several vertices in the graph form a clique we also know that at
most one of them can be selected into the solution. This simple property allows us to
do further relaxed reasoning. The clique of vertices can be treated as single entity with
a limited contribution to the solution (since only one vertex can be selected which
typically means that not a lot symbols in the goal can be covered by the clique). Then
we can check relaxed condition on selection of a vertex into the solution. A vertex can
be selected into the solution if the maximum number of symbols that can be obtained
from the remaining cliques plus the number of symbols of the vertex is not lower than
the number of symbols in the goal. This condition is necessary but not sufficient,
however if it does not hold we can filter out the vertex from further consideration.

This paper is organized as follows. First we give more details about our motivation
to deal with the problem. In the next two sections we introduce some formalism
through which we will express the problems and we discuss some complexity issues.
The fourth section is devoted to the description of our new global filtration. In the
main part, we evaluate our approach using a set of benchmarks. Finally, we put our
work into relation with existing works on the similar topic and we sketch out some
ideas for future development.

2 Motivation by AI Problems

We would like to give a motivation for studying goal satisfaction problems in mutual
exclusion networks in this section. Generally, we have two sources of motivation
from artificial intelligence - the first is concurrent planning and the second is Boolean
formula satisfaction.

The main motivation for our work was concurrent planning known from artificial
intelligence [6,7,9]. To provide better insight into our motivation let us introduce
concurrent planning briefly. Although the formalism and theory around concurrent
planning is quite complex the basic idea is simple. Let us have a certain planning
world (as an example we can consider a planning world shown in the upper part of
figure 1). The task we want to fulfill is to transform the given planning world by exe-
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cuting actions from a set of allowed actions into a state that satisfies certain goal con-
dition (as an example of the goal condition for a planning world we can take the plan-
ning world shown in the lower part of figure 1). An action in this context is an ele-
mentary operation that locally changes the planning world (such an elementary opera-
tion in figure 1 is for example take box 1 by crane A).

Concurrent plan for reaching the goal

{take(craneA, box1, pileX); take(craneB, box5, pileZ)}
{load(truck, craneA, box1); put(craneB, box5, pileY)}
{move(truck, siteA, siteB); take(craneB, box4, pileZ);
take(craneA, box2, pileX)}

{load(truck, craneB, box4); put(craneA, box2, pileX)}
{take(craneB, box5, pileY); take(craneA, box2, pileX)}
{put(craneB, box5, pileZ)}

{put(craneA, box2, pileX); unload(truck, craneB, box1)}
{move(truck, siteB, siteA); put(craneB, box1, pileY);
take(craneA, box2, pileX)}

{load(truck, craneA, box2); take(craneB, box1, pileY)}
{move(truck, siteA, siteB); put(craneB, box1, pileY);
take(craneA, box3, pileX)}

{put(craneA, box3, pileX); unload(truck, craneB, box2)}
{move(truck, siteB, siteA); put(craneB, box2, pileY);
take(craneA, box3, pileX)}

{load(truck, craneA, box3); take(craneB, box5, pileZ)}
{put(craneB, box5, pileY); unload(truck, craneA, box4)}
{move(truck, siteA, siteB); take(craneB, box5, pileY)}
{load(truck, craneB, box5); put(craneA, box4, pileX)}
{take(craneA, box4, pileX); unload(truck, craneB, box3)}
{move(truck, siteB, siteA); put(craneA, box4, pileX);
put(craneB, box3, pileZ)}

Goal condition {take(craneB, box2, pileY); unload(truck, craneA, box5)}
{put(craneA, box5, pileX); put(craneB, box2, pileZ)}

Fig. 1. An example of planning problem. The task is to transform the initial state of a given
planning world into a planning world satisfying the goal condition (in the goal condition we do
not care where the truck is located). A concurrent solution plan is in the right part of the figure.

In the basic variant of planning problems we are searching for a sequence of ac-
tions that, when executed one by one starting in the given planning world, results into
the planning world that satisfies the goal. The concurrent planning itself represents a
generalization of this basic variant. Particularly, we allow more than one action to be
executed in a single step in concurrent planning. This generalization is motivated by
the fact that certain actions do not interfere with each other and they can be executed
simultaneously without influencing each other (such non-interfering actions in figure
1 in the upper part are for example take box I by crane A and take box 5 by crane B;
the pair of actions load box I by crane A on truck and move truck from left location to
right location do interfere). Thus, the task in concurrent planning is to find not just a
sequence of actions but a sequence of sets of non-interfering actions that when exe-
cuted starting in the given planning world results into a goal satisfying state. The
execution of a sequence of sets of actions means that we are executing sets of actions
one by one where actions from each set are executed simultaneously. This is allowed
by the fact that actions in each set of the sequence do not interfere.

But what is the relation between the concurrent planning and the mutual exclusion
network mentioned in the introduction? The frequently asked question which arise
during solving process of algorithms for concurrent planning is “What are the sets (or
is there any) of non-interfering actions that satisfies certain goal?”. To be more con-
crete, this question often arises during the solving process with the usage of the
framework of so called planning graphs [2]. This is the case of the pioneering
GraphPlan algorithm as well as of its modern derived variants [8,9,10]. This question
can be directly modeled as a mutual exclusion network (actually we borrowed the
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term mutual exclusion from the planning graph terminology), where the vertices of
the network are represented by actions (a set of terms that forms the effect of the
action is assigned to the corresponding vertex as a set of symbols) and edges of the
network are represented by pairs of actions that interfere with each other.

The minor motivation to study the concept of mutual exclusion networks is Boo-
lean formula satisfiability. We found that Boolean formula satisfaction problems
(SAT) [3, 19] can be modeled as mutual exclusion networks. This issue is studied in
more details in [17, 18], therefore we mention it as a motivation only. However, let
us note that a SAT problem consists in finding of a valuation of Boolean variables
that satisfies a given formula in conjunctive normal form (CNF - conjunction of
clauses where clause is a disjunction of literals).

Intuitively, it is possible to observe that such modeling can be done by declaring
literals to be vertices of the network where each vertex (literal) has assigned a set of
clauses in which it appear as its set of symbols. The goal would be the set of all the
clauses of the given formula and edges in the network would connect vertices (liter-
als) which are conflicting (in the most trivial case, literals x and —x, where x is a
variable, are conflicting).

These two areas of application of our concept of global filtering are especially suit-
able since they often contain properties of objects that behave like functions. That is,
a single value can be assigned to the property of an object or of a group of objects at
the moment (for example imagine a robot at coordinates [3,2], the robot can move to
coordinates in its neighborhood, so the possible actions are: moveTo([2,2]),
moveTo([2,3]), ...; the robot can choose only one of these actions at the moment;
executing more than one action at once is physically implausible). Such functional
property typically induces a complete sub-graph in the mutual exclusion network.

3 Mutual Exclusion Network and Related Problem

We define mutual exclusion network and problems associated with it formally in this
section.

The following definitions formalize mutual exclusion network (shortly mutex net-
work) and the associated problem of satisfying goals in the mutex network. We as-
sume a finite universe of symbols S for the following definitions.

Definition 1 (Mutual exclusion network). Mutual exclusion network is an undi-
rected graph N =(V,M), where a finite set of symbols @ = S(v) = S is assigned to
each vertex vel .o

Definition 2 (Goal satisfaction in mutex network). Given a goal G< S and a
mutex network N =(V,M) the problem of satisfying goal G in the mutex network
N is the task of finding a stable set of vertices U ¥ such that G < J,_, S(u) . O

An example of mutual exclusion network and a problem of goal satisfaction in this
network are shown in figure 2.

The problem of goal satisfaction in mutex network is computationally difficult. To
show this claim we can use a polynomial time reduction of the Boolean formula satis-
faction problem to the problem of goal satisfaction in mutex network. Then it remains
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only little to conclude that the problem of goal satisfaction in mutex network is NP-
complete.

Theorem 1 (Complexity of goal satisfaction). The problem of goal satisfaction in
mutex network is NP-complete. m

Sketch of proof. If we are given a set of vertices we are able to decide whether it is a
solution of the problem or not in polynomial time. Hence, the problem is in NP class.
NP-hardness can be proved by using polynomial time reduction of Boolean formula
satisfaction problem (SAT) to the problem of goal satisfaction in mutex network.
Consider a Boolean formula B over a set of Boolean variables. It is possible to as-
sume that the formula B is in the form of conjunction of disjunctions, that is
B=A., V’j’,’;l_xf'/. , Where x’/ is a variable or a negation of a variable (literal). For each
clause V" x; where i=1,2,...,n we introduce a symbol i into the constructed goal
G . We introduce vertices v and —v into the network for every variable v from the
set of variables. A set of symbols S(x)={i|x e Uf;’;l{x‘;}} is assigned to each vertex
x of the network (set of symbols for a vertex corresponds to the set of clauses in
which the literal corresponding to the vertex occurs). Finally we add an edge {x;,x,k}
into the mutex network if x; =v and x; =—v or x; =—v and x; =v for some Boo-
lean variable v (x) and x; are positive and negative literals of the same variable).
Now it is sufficient to observe that we can obtain a solution of the original Boolean
formula satisfaction problem from the solution of the constructed problem of goal
satisfaction in polynomial time. m

S(2)={c}

7
S(6)={e.f} S(7)={d.g.h,i}

S(3)={d} 6
8

S(8)={g,h}

S(5)={a,b,j}

S(1)={a,b} S(4)={h} 5

GoaIG=|a|b|c|d|e|f|g|h|

Solution U={2,5,6,7} (S(2)US(5)US(6)US(7)={c}A{a,b,}uie,fiuid,g h,i)={a,b,c.d,e f,g,h,i,}oG)

Fig. 2. An instance of the problem of satisfying goal in a mutual exclusion network. The solu-
tion is depicted by circles around vertices.

There is little hope to solve the problem of goal satisfaction in mutex network ef-
fectively (in polynomial time) in the light of this result. It seems that search is the
only option to solve the problem. However, the search may be more or less informed.
The more informed search leads to the lower number to steps required for obtaining a
solution (the number of steps of the search is usually in tight relation with the overall
solving time). One of the most successful techniques how the search can be made
more informed is the usage of so called filtration techniques (or consistency tech-
niques) which are used intensively in constraint programming [4].

The filtration technique is a specialized algorithm that enforces certain necessary
condition for existence of the solution in the problem. Since the basic requirement on
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the filtration technique is its high speed and low space requirements the necessary
conditions that are used in practice represent relatively big relaxations of the original
problem. Enforcing of the consistency is done in most cases by ruling out the values
from the variables over which the search makes decisions. Such removal of values
reduces the size of the search space. The amount of search space reduction is deter-
mined by the strength of the filtration technique (that is by the strength of the en-
forced necessary condition). On the other hand the stronger filtration technique is
often redeemed by its higher time complexity. Therefore a balanced trade-off between
strength of filtration technique and resource requirements must be found.

A well known example of filtration technique is arc-consistency [11]. This is the
representative of the technique that enforces certain type of local necessary condition.
Locality of filtering technique means that a small number of decision variables is
considered at once (in the case of arc-consistency only two variables are considered at
once). Another advantage of local filtering techniques is that they are usually highly
generic which allows using them in variety of problems with no or little adaptation.

The stronger filtration can be achieved by so called global filtering techniques.
These methods take into account more than two decision variables at once (in the
extreme case all the decision variables in the problem). The large portion of the prob-
lem considered at once inherently implies stronger necessary conditions that can be
enforced. However, the drawback of global filtering techniques is that they are asso-
ciated with particular sub-problems (for example the problem where we have several
variables with finite domains of values and we require pair-wise different values to be
assigned to these variables respecting variable’s domains - allDifferent filtering tech-
nique [12]) which precludes their usage when we cannot recognize the right sub-
problem in the problem of our choice.

4 Global Filtration for Goal Satisfaction in Mutex Network

We have the formal definition of the problem we are about to solve it at this point.
The solving approach we develop in this section is a new global filtration technique.
The technique will be designed specially for problems of goal satisfaction in mutex
network (with regard on applications in concurrent planning).

We visually observed that mutex networks obtained from problems arising in con-
current planning embody high density of edges grouped in relatively small number of
clusters (this observation was done using our visualization utility on the series of
concurrent planning problems). Let us note that our method works with sparse mutex
networks as well. The high density of edges and their structural distribution is caused
by various factors. Nevertheless, we regard the functional character of properties of
objects encoded in the network as the most important one (in planning generally, the
functional character of object’s properties is typical). Values that form the domain of
such property induces complete sub-graphs (clique) in the mutex network. The de-
scribed structural characterization of mutex networks we can meet in concurrent plan-
ning can be exploited for designing of a filtration technique.

If we know a clique decomposition of the mutex network we can reason about the
impact of the vertex selection on possibility of goal satisfaction. To be more concrete,
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we know that at most one vertex from each clique of the decomposition can be se-
lected to contribute to the satisfaction of the goal. Hence, for each clique of the de-
composition we can calculate the maximum number of symbols of the goal which can
be covered by the vertices of the clique. When we select a vertex into the solution the
necessary condition on the solution existence is that the number of symbols covered
by the remaining cliques of the decomposition together with symbols associated with
selected vertex must not be lower than the number of symbols in the goal.

The second part of the idea of our filtration technique is that if we restrict ourselves
on the proper subset of the goal the set of vertices ruled out by the above counting
arguments can be different. Therefore it is possible to perform filtration by the tech-
nique with respect to multiple sub-goals of the goal to achieve the maximum pruning
power. We call these sub-goals of the goal projection goals and according to this
designation we call the whole filtration technique projection consistency.

4.1 Partitioning the Mutex Network into Cliques

Projection consistency assumes that a partition into cliques of a mutex network is
known. Thus we need to perform a preprocessing step in which a partition into cliques
of the mutex network is constructed. Let N =(V,M) be a mutex network. The task is
to find a partition of the set of vertices V' =C, UC, U...0UC, suchthat CNC, =0
for every i,je{l,2,...,n}&i#j and C, is a clique with respect to M for
i={L,2,...,n}. Cliques of the partitioning do not cover all the edges in the network in
general case. For m=M —(C; UC, U...0UC>), m#@ holds in general (where
C* ={{a,b}|a,be C & a #b}). Our requirement is to minimize » and |m| somehow.
Unfortunately this problem is too hard for reasonable objective functions of »n and
|m| to be solved within the preprocessing step (for instance it is NP-complete for
minimizing just n [5]).

As an exponential amount of time spent in preprocessing step is unacceptable it is
necessary to abandon the requirement on optimality of partition into cliques. It is
sufficient to find some partition into cliques to be able to introduce projection consis-
tency. Our experiments showed that a simple greedy algorithm provides satisfactory
results. Its complexity is polynomial in size of the input graph which is acceptable for
the preprocessing step. The greedy algorithm we are using repeatedly finds the largest
greedy clique; the clique is extracted from the network in each step; the algorithm
continues until the network is non-empty. For detailed description of this process see
[14]. We also made some experiments with partition into cliques of higher qualities
than that produced by the greedy algorithm. However, we did not observe any subse-
quent improvement of the filtering strength of projection consistency.

4.2 Formal Definition of Projection Consistency

For the following formal description of projection consistency we assume that a parti-
tion into cliques V' =C, W C, U...uC, of the mutex network N =(V,M) was con-
structed. Projection consistency is defined over the above clique decomposition for a
projection goal @ # P < G . The projection goal P enters the definitions as a parame-
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ter. Projection goals are used for restricting the consistency on a certain part of the
goal satisfaction problem (on certain part of the goal) which may eventually
strengthen the necessary condition we are about to check.

The fact that at most one vertex from a clique can be selected into the solution al-
lows us to introduce the following definition.

Definition 3 (Clique contribution). A contribution of a clique C €{C,,C,,...,C,} to
the projection goal @+ P — G is defined as max(|S »)n P| |veC) and it is denoted
as ¢(C,P).o

The concept of clique contribution is helpful when we are trying to decide whether
it is possible to satisfy the projection goal by selecting the vertices from the partition
into cliques. If for instance > c(C,,P)< |P| holds then the projection goal P can-
not be satisfied. Nevertheless, the projection consistency can handle a more general
case as it is described in the following definitions.

Definition 4 (Projection consistency: supported vertex). A vertex veC, for
ie{l,2,...,n} is supported with respect to a given clique decomposition and the pro-
jection goal P if 3" _.c(C,,P)=|P—S(v)| holds. o

Definition S (Projection consistency: consistent problem). An instance of the prob-
lem of satisfaction of a goal G in a mutex network N =(V,M) is consistent with
respect to the given clique decomposition and the projection goal @ = P < G if every
vertex veC, for i=1,2,...,n is supported with respect to the given clique decompo-
sition and the given projection goal. O

It is easy to observe that projection consistency is a necessary but not sufficient
condition on existence of the solution. This claim is formally proved in [15].

Algorithm 1: Projection consistency propagation algorithm

function propagateProjectionConsistency ({C,,C,,...,C,},P): set
y <0

for i=1,2,...,n do

¢, < calculateCliqueContribution (C,, P)

y<r+e

for i=1,2,...,n do

for each veC, do

|if y +|S(v) " P|<|P~S(v)| +¢, then C, < C,—{v}
return {C,,C,,...,C, }

function calculateClique Contribution (C, P) : integer
9: c<«0

10: for each ve C do

11: | ¢« max(c,|S(v) " P|)

12: return ¢

PRINRERD

A propagation algorithm for projection consistency is shown here as algorithm 1.
Clique decomposition and projection goal are parameters of the algorithm. The algo-
rithm runs in O(|V||P|) steps which is polynomial in size of the input [15].
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To ensure maximum vertex filtration effect we can enforce the consistency with re-
spect to multiple projection goals. However, it is not possible to use all the projection
goals since they are too many. Our experiments showed that projection goals P,
where P ={s|seG& |{v |seS(Hv)n G}| =i} provide satisfactory filtration effect
(precisely, it is the best selection rule we found by experimentation). The number of
projection goals of this form is linear is size of the goal G .

An example of projection consistency enforcing in the goal satisfaction problem
from figure 2 is shown in figure 3.

S(7)={d.g.h.i}

S(6)={e.f}

S@)=(n} © S(8)={g.h}

GoaIG=|a|b|c|d|e|f|g|h|

Clique decomposition V = Cyu C,u C3u C4 , where C1={1,2,3,4}, C,={6,8}, C3={5}, and C,={7}.
Projection goals: P={c,e,f}, P,={a,b,d,g} and P;={h}.

Fig. 3. Example of projection consistency enforcing. The goal satisfaction problem is same as
in figure 2. Unsupported vertices are surrounded by squares. For example vertex 3 is unsup-
ported for the projection goal P;={c,e,f} since vertex 3 contributes by 0, C, contributes by 2, C;
contributes by 0, and C, contributes by 0 which is together less than the size of P;.

5 Experimental Evaluation

This section is devoted to experimental evaluation of the projection consistency. Our
experimental evaluation is concentrated on two aspects of the proposed global consis-
tency. Firstly, we would like to evaluate the consistency itself by using a set of ran-
domly generated goal satisfaction problems. Secondly, we would like to evaluate the
benefit of the new consistency when it is applied in concurrent planning. We carried
out this evaluation by integrating the consistency into the GraphPlan based algorithm
for generating concurrent solutions of planning problems.

5.1 Random Goal Satisfaction Problems

When we visually observed how do the problems arising in concurrent planning look
like the distribution of structures was clearly evident. The mutex network associated
with the problems typically consists of small number of relatively large cliques ac-
companied with small number of edges not belonging to any clique. The example of
such mutex network is shown in figure 4.
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The most variable part of the problem as it was
evidenced by our observation is the number of edges
not belonging to any clique. Therefore we decided to
have this parameter as the main variable parameter in
our set of randomly generated problems.

As a competitive technique we chose arc-
consistency since it is similar to our new technique in
several aspects. First, arc-consistency is easy to im-
plement. This is also true for projection consistency.
Second, both filtration techniques remove values from
the decision variables (not tuples of values etc.).

We integrated both techniques into a backtracking
based algorithm for solving the goal satisfaction prob-
lem in mutex network. The algorithm performs filtra-
tion after each decision - so we are maintaining arc-
consistency [11] or projection consistency respec-
tively in our solving approach.

Fig. 4. Mutex network arising
as a sub-problem during con-
current solution construction of
a planning problem.

m=0.06 m=0.08 m=0.10

Fig. 5. Random mutex networks with 120 vertices and with fixed structured part (several com-
plete sub-graphs) and with increasing portion of randomly added edges. The parameter m is the
probability of presence of an edge between a pair of vertices. Mutex networks shown in this
figure were used for experimental evaluation.

We evaluated our global filtration technique in comparison with arc-consistency on
a set of random problems of goal satisfaction of the following setup motivated by the
visual observation of problems arising in concurrent planning. In a mutex network
consisting of 120 vertices we constructed several complete sub-graphs using uniform
distribution with the mean value of 20.0. The size of the goal was 60 and each vertex
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has assigned a random set of symbols from the goal of the size generated by the nor-
mal distribution with the mean value of 8.0 and the standard deviation of 6.0. Finally
we added random edges into the mutex network. More precisely, we add each possi-
ble edge into the mutex network with the probability of m where m was a variable
parameter which ranged from 0.0 to 0.1. The illustration of randomly generated mutex
networks used in our evaluation is shown in figure 5.

For each value of the parameter m we generated 10 goal satisfaction problems and
we solved them using backtracking with maintaining arc-consistency and maintaining
projection consistency respectively. Along the solving process we collected data such
as number of backtracks, runtime etc. The variable and value ordering heuristics are
the following. A variable with the smallest domain (smallest clique) is selected pref-
erably. Values (vertices) within the variable’s domain are not ordered.

The tested algorithms were implemented in C++ and were run on a machine with
AMD Opteron 242 processor (1.6 GHz) and 1 GB of memory under Mandriva Linux
10.2. The code was compiled by gcc compiler version 3.4.3.
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Fig. 6. Runtime for random goal satisfaction problems (average of 10 problems for each value
of random edge probability m).
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Fig. 7. Runtime for random goal satisfaction problems (easiest problem of 10 for each value of
random edge probability m).
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For each value of parameter m we calculated average runtime of both techniques,
runtime of the easiest problem (the problem with the fewest number of backtracks)
and the runtime of the hardest problem (the problem with the highest number of back-
tracks). The results we obtained are shown in figures 6, 7, and 8.

The results show that backtracking with maintaining projection consistency is gen-
erally faster than backtracking with maintaining arc-consistency on a set of tested
problems. In some cases, version with maintaining projection consistency is several
times faster (figure 6). The version with maintaining projection consistency achieves
better improvement compared to the version with maintaining arc-consistency on
harder problems (figure 8). On the other hand, on easy problems projection consis-
tency provides little or no advantage (figure 7). We may also observe that harder
problems tends to occur more for lower values of m . On these problems projection
consistency represents clearly the better option.
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Fig. 8. Runtime for random goal satisfaction problems (hardest problem of 10 for each value
of random edge probability m).
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Fig. 9. Improvement ratio of backtracking with maintaining projection consistency with respect
to backtracking with maintaining arc-consistency on random goal satisfaction problems.
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The improvement ratio of solving algorithm using projection consistency with re-
spect to the version with maintaining arc-consistency is shown in figure 9. On the
tested problems we reached the improvement up to the order of magnitude.

The solvability ratio of the tested problems is shown in figure 10. For different
values of the parameter m we had a different numbers of problems that had a solution
and problems for which the solution does not exist.

We also performed comparison of number of backtracks that occurred during solv-
ing the random problems by the tested algorithms. In addition to backtracking with
maintaining arc-consistency and projection consistency we also made the calculation
of backtracks made by simple uninformed backtracking. The comparison of number
of backtracks is shown in figure 11. According to figure 6 and figure 11 we can ob-
serve that the runtime and the number of backtracks correspond well.
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Fig. 10. Ratio of solvable random goal satisfaction problems. For each value of parameter m

the number of solvable problems divided by the total number of problems (=10) is shown.
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Fig. 11. Number of backtracks of tested algorithms on random goal satisfaction problems.
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5.2 Problems Arising in Concurrent Planning

We also evaluated the proposed projection consistency in solving problems that arise
in concurrent planning (that is in the area for which the filtering technique was de-
signed). We used GraphPlan planning algorithm [2] for this evaluation. This algo-
rithm often solves a sub-problem that can be reformulated to a goal satisfaction prob-
lem in mutex network.

In our evaluation we used maintaining arc-consistency and projection consistency
respectively to improve solving process of this sub-problem within the planning algo-
rithm. We used a set of planning problems of three domains - dock worker robots
domain, towers of Hanoi domain, and refueling planes domain. The tested problems
were of various difficulties. The length of solution plans ranged from 4 to 44 actions.
The comparison of runtime of standard GraphPlan and versions enhanced with main-
taining arc-consistency and projection consistency is shown in figure 12. All the plan-
ning problems used in this evaluation are available at the web site:
http://ktiml.mff.cuni.cz/~surynek/research/rac2007/ (we use our own format of plan-
ning problems since we use non-standard representation with explicit state variables).

The improvement obtained by using projection consistency is up to 1000% with
respect to both the standard GraphPlan as well as with respect to the version enhanced
by arc-consistency. Additionally, we found that goal satisfaction problems arising in
these planning problems are very similar to random goal satisfaction problems with
the parameter ranging from 0.07 to 0.02 where the improvement obtained by projec-
tion consistency is promising.
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Fig. 12. Runtime comparison of GraphPlan based planning algorithm with versions of this
algorithm enhanced by maintaining arc-consistency and projection consistency for solving goal
satisfaction problems on a set of planning problems of various difficulties.

6 Note on Additional Related Works and Conclusion

Originally, we proposed projection consistency in [15]. This paper is dedicated to
theoretical properties of the technique (theoretical comparison with arc-consistency is
given in the paper). A study of using similar technique to projection consistency in
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solving difficult Boolean formula satisfaction problems is given in [17]. The applica-
tion of arc-consistency in planning using planning graphs is proposed in [16]. We also
investigated the possible strengthening of the projection consistency by replacing the
expression Y .c(C,,P)2|P—S(v)| in the definition 4 by > .c(C,,P—S(v))
Z|P—S(v)| . Details are given in [13]; but let us note that this change complicates
effect of vertex removal too much in a general network (the so called monotonicity
[15] does not hold).

The ideas of using constraint programming techniques in concurrent planning are
presented in [6, 7]. However, only local propagation techniques are studied there
(contrary to our approach which is global). Concurrent planning itself is studied in
[20]. In this work we were primarily inspired by global constraints such as that pre-
sented in [12].

We proposed a novel global filtration technique for a problem of goal satisfaction
in mutual exclusion networks. The problem for which the filtration was designed was
inspired by concurrent planning. However, the technique is more general, currently
we know that it is also effectively applicable in solving SAT problems.

We evaluated our technique in comparison with arc-consistency on a set of ran-
domly generated problems. For this evaluation we used our own implementation in
C++. The improvement gained by using projection consistency is up to the 10 times
shorter runtime; a similar improvement was achieved in number of backtracks. Fi-
nally, we integrated our technique into the GraphPlan planning algorithm to evaluate
it in some area of application. Again we obtained significant improvements compared
to the standard version.

For future work we plan to investigate more precise computation of supported ver-
tices (definition 4) using network flows. We believe that a more precise computation
of this would lead to a stronger necessary condition we are checking.
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